Feature- and Object-based Attentional Modulation in the Human Auditory "Where" Pathway
نویسندگان
چکیده
Attending to a visual stimulus feature, such as color or motion, enhances the processing of that feature in the visual cortex. Moreover, the processing of the attended object's other, unattended, features is also enhanced. Here, we used functional magnetic resonance imaging to show that attentional modulation in the auditory system may also exhibit such feature- and object-specific effects. Specifically, we found that attending to auditory motion increases activity in nonprimary motion-sensitive areas of the auditory cortical "where" pathway. Moreover, activity in these motion-sensitive areas was also increased when attention was directed to a moving rather than a stationary sound object, even when motion was not the attended feature. An analysis of effective connectivity revealed that the motion-specific attentional modulation was brought about by an increase in connectivity between the primary auditory cortex and nonprimary motion-sensitive areas, which, in turn, may have been mediated by the paracingulate cortex in the frontal lobe. The current results indicate that auditory attention can select both objects and features. The finding of feature-based attentional modulation implies that attending to one feature of a sound object does not necessarily entail an exhaustive processing of the object's unattended features.
منابع مشابه
Frequency-specific attentional modulation in human primary auditory cortex and midbrain
Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midb...
متن کاملA State-Space Model for Decoding Auditory Attentional Modulation from MEG in a Competing-Speaker Environment
Humans are able to segregate auditory objects in a complex acoustic scene, through an interplay of bottom-up feature extraction and top-down selective attention in the brain. The detailed mechanism underlying this process is largely unknown and the ability to mimic this procedure is an important problem in artificial intelligence and computational neuroscience. We consider the problem of decodi...
متن کاملAttention modulates sound processing in human auditory cortex but not the inferior colliculus.
Auditory attention powerfully influences perception and modulates sound processing in auditory cortex, but the extent of attentional modulation in the subcortical auditory pathway remains poorly understood. We examined the effects of intermodal attention using functional magnetic resonance imaging of the inferior colliculus and auditory cortex in a demanding intermodal selective attention task ...
متن کاملWhere sound position influences sound object representations: A 7-T fMRI study
Evidence from human and non-human primate studies supports a dual-pathway model of audition, with partially segregated cortical networks for sound recognition and sound localisation, referred to as the What and Where processing streams. In normal subjects, these two networks overlap partially on the supra-temporal plane, suggesting that some early-stage auditory areas are involved in processing...
متن کاملOn the nature of the features generated in the human auditory pathway for phone recognition
The features used by human phone recognition are generated along the auditory pathway by several transformations. In the first stages 'modulation features' are generated in lamina of neurons building a 3 dimensional strongly quantized structure, where each point of the structure corresponds to a feature component. One dimension concerns the different critical bands originated by bundles of inne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cognitive neuroscience
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2007